Estimating decision strategies by probabilistic latent semantic indexing and simulation
نویسندگان
چکیده
منابع مشابه
A probabilistic model for Latent Semantic Indexing
Dimension reduction methods, such as Latent Semantic Indexing (LSI), when applied to semantic space built upon text collections, improve information retrieval, information filtering and word sense disambiguation. A new dual probability model based on the similarity concepts is introduced to provide deeper understanding of LSI. Semantic associations can be quantitatively characterized by their s...
متن کاملSparsification Strategies in Latent Semantic Indexing
The text retrieval method using Latent Semantic Indexing (LSI) with the truncated Singular Value Decomposition (SVD) has been intensively studied in recent years. The term-document matrices after SVD are full matrices, although the rank is reduced substantially. To reduce memory consumption, we examine some strategies to sparsify the truncated SVD matrices. After applying the sparsification str...
متن کاملClustered SVD strategies in latent semantic indexing
The text retrieval method using Latent Semantic Indexing (LSI) technique with truncated Singular Value Decomposition (SVD) has been intensively studied in recent years. The SVD reduces the noise contained in the original representation of the term-document matrix and improves the information retrieval accuracy. Recent studies indicate that SVD is mostly useful for small homogeneous data collect...
متن کاملIndexing by Latent Semantic Analysis
A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higher-order structure in the association of terms with documents ("semantic structure") in order to improve the detection of relevant documents on the basis of terms found in queries. The particular technique used is singular-value decomposition, in which a large term by document matri...
متن کاملEfficient Probabilistic Latent Semantic Indexing using Graphics Processing Unit
In this paper, we propose a scheme to accelerate the Probabilistic Latent Semantic Indexing (PLSI), which is an automated document indexing method based on a statistical latent semantic model, exploiting the high parallelism of Graphics Processing Unit (GPU). Our proposal is composed of three techniques: the first one is to accelerate the Expectation-Maximization (EM) computation by applying GP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Proceedings of the Annual Convention of the Japanese Psychological Association
سال: 2018
ISSN: 2433-7609
DOI: 10.4992/pacjpa.82.0_2pm-015